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Abstract 

Entropy maximization is an alternative to least- 
squares or squares minimization for the relative scal- 
ing of intersecting data sets. The iterative calculations 
converge rapidly, even for difficult cases, and the 
scaling is truly relative in contrast-to that of other 
widely used methods. 

1. Introduction 

The relative scaling of X-ray intensities from photo- 
graphic records is customarily based on the method 
of Hamilton, Rollett & Sparks (1965). Their least- 
squares method solved the major computational 
problems which existed at that time. By its general 
acceptance the method has provided a standard 
approach for scaling calculations that is based on the 
uniquely useful principle of least squares. 

Entropy maximization is another principle which 
can be used in relative scaling calculations. Although 
the method presented here is rooted in information 
theory and its iterative formalism has no apparent 
similarity to that of Hamilton, Rollett & Sparks ( 1965; 
HRS hereafter), its results provide excellent numeri- 
cal corroboration of those from HRS. The similarity 
of results for the two very different approaches 
strengthens the claim of each as a correct procedure. 
The present method based on entropy maximization, 
although it applies only to positive numbers, appears 
to be more general. Two notable points are that the 
calculations do not require intervention to avoid sin- 
gularities, and the scale factors are truly relative, that 
is, multiplying all scale factors by an arbitrary positive 
number does not change any average of scaled 
intensities. Certain characteristics of the entropy- 
maximization formalism are also present in the 
logarithmic scaling procedures of Nordman (1960) 
and Rae (1965; Rae & Blake, 1966). 

2. Formalism 

In order to bring the scaling problem into the 
framework of information theory, each observation 
is interpreted as the prior probability of a particular 
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event. It may be said that the collection of possible 
events corresponds to a communications apparatus 
for which the task at hand is its adjustment to make 
any mismatch of actual and prior distributions carry 
as little information as possible. This task exactly 
parallels the discovery of die unfairness by a 
maximum-entropy criterion (Jaynes, 1979). In the 
present application the engineering analogy turns into 
a determination of scale factors by entropy maximiz- 
ation. 

The entropy which measures the difference between 
a (normalized) prior distribution m and another (nor- 
malized) distribution p is formulated (Jaynes, 1968; 
Collins, 1982) as 

H = -E  ps ln [ps/ ms]. (2.1) 
J 

An intensity identified by h and observed on film i 
is denoted Ih~. The corresponding average intensity is 
Jh and the scale factor Gi puts Jh on the scale of lhi. 
ThUS, (2.1) may be put in the form 

Q=-Y'. (G, Jh)'ln[(G, Jh)'/(Ih,)'], (2.2) 
h,i 

where the prime denotes normalization. Q is to be 
maximized by setting 

OQ/oG, =0. (2.3) 

Straightforward algebraic manipulation results in 

l n G i = A - ~  Jh lnJh (2.4) 

where 

G, Jh G, Jh (2.5) 
h,i GiJh 

Note that both summations in (2.4) include only those 
terms for which there is an observation of intensity 
from film i. The proper form for computation of the 
best maximum-entropy value for J is found by setting 

oQ/OJh =0. (2.6) 
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Straightforward algebraic manipulation results in 

l n J h = A - - ~  G-----2---~ In G--2 (2.7) 

where A is given by (2.5). Note that both summations 
in (2.7) include only those terms for which a film 
carries an observation of intensity I. 

Although it is not certain how weights are to be 
incorporated in entropy expressions (Jaynes, 1968), i, 
inclusion of customary weights can be rationalized I2 I3 

as follows. Expand the logarithm in (2.1) to get la 
I5 

H = -~_, Pi[(PJ- mj)/pj +½(pj- mj)2/p] +...]; 
J 

pJmj>½. (2.8) 

If as desired p~ m = 1, the higher-order terms in (2.8) 
may be ignored to give 

H"- -Y. (pj-  mj) +½(pj- mj)Z/pj, (2.9) 
j 

and when ( p - m )  is well distributed about zero 

H~- -E  ½(pj- m~):/pj. (2.10) 
J 

Clearly, within the approximations (of Jaynes, 1979) 
maximization of entropy has the same character as 
minimization of squares. 

Two useful results follow immediately from the 
form of (2.10). The parallel in maximum-entropy 
methods to the diagonal weight matrix or ordinary 
term-by-term weighting of least-squares methods is 
again term-by-term weighting. Secondly, to make 
each term in H of equivalent value in some average 
sense, the weight for a value of p should be propor- 
tional to 

w=p/o'2(p). (2.11) and 

Because of the normalization in (2.2), (2.4), (2.5) and 
(2.7), the scale of weights is inconsequential. In these 
equations every term is to be weighted with 

Wh, = lh,/ O'2( Ihi) (2.12) 

for calculations including weights. 
Equations (2.4), (2.5) and (2.7) constitute an itera- 

tive solution to the scaling problem. A singular 
property of this set of equations is that multiplication 
of the scale factors by an arbitrary positive constant 
has no effect on the average intensities; the scale 
factors are necessarily independent of the intensity 
scale as well. 

3. Examples from HRS 

In the following tests the true relativity of scale is 
used to set a scale factor at 1.0 after each iteration. 
Also, after each iteration, the overall intensity scale 

Table 1. Data for HRS, example 1 

F i l m  l F i l m  2 F i l m  3 

I I 1 0 0  2 - -  

12 - -  1 2 

I 3 1 0 0  3 - -  

Table 2. Data for HRS, example 2 

F i l m  I F i l m  2 F i l m  3 F i l m  4 

100 2 - -  - -  
- -  I 2 - -  

100 3 - -  - -  
- -  - -  1 4 

25 - -  - -  1 

is set independently by a least-squares criterion to 
correspond with the scale of the observations. To get 
started the scale factors were set to make the average 
intensity the same for each film. 

The pathological data sets of HRS, restated in 
Tables 1 and 2, were used without change. Four sets 
of calculations were carried out to obtain scale factors 
and best maximum-entropy values of J for each of 
the two examples of HRS, both with and without 
weights. Weighting is introduced in (2.2)-(2.7) 
through multiplication of every GiJh o r  lhi by Whi. The 
weighting scheme used was 

o'(I)~ I; w~ 1/I. (3.1) 

The lack of weights, that is, unit weighting, corre- 
sponds to 

(r(l) ~ I1/2; w = a constant. (3.2) 

Formal error estimation was carried out by evaluation 
of the r.m.s, deviations 

o-(Jn) = [((J~, - lh,K,)2)] I/2, (3.3) 

tr(K,)=[((K,-Jh/lh,)2)] ~/2, (3.4) 

where K = G -~, and the angle brackets signify an 
average value. 

Fifteen iterations for each of the four sets of calcu- 
lations showed no divergence. It will be clear that 
formally estimated r.m.s, deviations are of uncertain 
significance when the data are so few and incongruous 
as in these tests. In any case, by a criterion of all 
subsequent shifts in K less than 0.1o-(K), conver- 
gence was achieved in an average of five cycles; the 
worst case was convergence in seven cycles. The 
results of the tests are given in Tables 3 and 4. 

4. Discussion 

The HRS method for scaling together intersecting 
data sets has been successful and satisfactory for the 
crystallographic community. The fixing of one scale 
factor was the principal basis for objections by Fox 
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Table 3. Results of scaling for HRS, example 1 

Formal  r.m.s, deviat ions are given in parentheses .  

Weighted Unweighted  H RS 

I~ 4.36 (53) 4.85 (4) 5.00 
I 2 1-99 (1) 1-99 (1) 2.00 
13 5.34 (45) 4.90 (3) 5.00 
K~ 0.0490 (49) 0-0488 (2) 0.050 
K2 2.00 (19) 1.99 (38) 2.00 
K 3 1.000 (4) 1.000 (3) 1.000 
Q* -0.34 x 10 -2 -0.47 × 10 -3 

* Entropy from the appropriately weighted equation (2.2) 

Table 4. Results of scaling for HRS, example 2 

Formal  r.m.s, deviat ions are given in parentheses.  

Weighted Unweighted  HRS 

I~ 5-95 (35) 5.65 (3) 6-00 
/2 3.59 (100) 3.61 (120) 3.83 
I 3 6"97 (73) 5"70 (5) 6"00 
14 2"83 (94) 3.49 (60) 3.80 
15 1"12 (44) 1"39 (4) 1.50 
K~ 0.0630 (79) 0.0568 (3) 0.060 
K 2 3.22 (77) 2.59 (69) 2.56 
K3 2.54 (73) 2.51 (86) 2.54 
/(4 1.00 (33) 1.00 (17) 1.00 
Q* -0"20 x I0 -x -0" 19 x 10 -2 

* Entropy from the appropriately weighted equation (2.2). 

& Holmes (1966) and by Monahan, Schiffer & Schiffer 
(1967). The latter authors presented a system of 
equations which allows for variation of all scale fac- 
tors without explicit constraint and in each iteration 
provides a value for a scale factor itself rather than 
a scale-factor increment. Although the three papers 
differ significantly in their final equations, they are 
three expressions of the basic method set out by HRS 
(Monahan, Schiffer & Schiffer). 

In contrast to the HRS and cognate methods, the 
present method yields truly relative scale factors. This 
can be seen by inspection of (2.4), (2.5) and (2.7). If 
one supposes that their iterative evaluation has been 
completed, then it is clear that multiplication of all 
scaled intensities by an arbitrary positive constant 
leaves the scale factors unchanged. Moreover, the 
scale factors may be multiplied by an arbitrary posi- 
tive constant and the scaled intensities are unaffected. 
The overall scale of the intensities and the scale of 
the scale factors are completely independent. This 
independence does not characterize the logarithmic 
scaling of Nordman (1960) although it is independent 
of overall scale with respect to adjustment of a scale- 
factor logarithm. 

It is important that entropy maximization yields 
essentially the same results as the squares minimiz- 
ation of HRS. Nevertheless, the entropy maximiz- 
ation procedure appears superior in that it does not 
require any intervention, either to guard against 
unreasonable results, or to set or reset any value. 
Computational economy is probably not a significant 

issue for scaling calculations, but it is worth noting 
that the maximum-entropy calculations converge very 
rapidly. To be definite, a test was set which involved 
27 data, each recorded twice for a total of 54 observa- 
tions in two sets with a mean difference of ---2%. The 
scale of one set was misset by an order of magnitude. 
It was returned to its correct value in one iteration. 
Against any advantage in convergence speed, the 
maximum-entropy method does require the evalu- 
ation of two logarithms in addition to normal arith- 
metic operations for each observation in every iter- 
ation. 

Robust/resistant procedures work well over a 
broad class of error distributions (robust) and are not 
strongly influenced by any small subset of data (resis- 
tant) (Nicholson, Prince, Buchanan & Tucker, 1982). 
It seems clear on the basis of the examples given in 
the preceding section that the entropy-maximization 
procedure is well described as robust. Following 
Nicholson et al. we consider that the procedure is 
resistant in that large discrepancies between observa- 
tions and modeled equivalents are de-emphasized in 
(2.4), (2.5) and (2.7). The de-emphasis follows from 
the comparison of observed and modeled data 
through the logarithm of their ratio so long as observa- 
tions of extraordinarily small magnitude are not used. 
Anisotropic scaling as described by Rossmann, Les- 
lie, Abdel-Meguid & Tsukihara (1979) or other 
similarly exacting calculations would appear to 
benefit from use of entropy maximization rather than 
least squares which is neither robust nor resistant 
(Nicholson, Prince, Buchanan & Tucker). 

Nielsen (1977) gave a maximum-entropy method 
for optimizing weights in least-squares analysis. It is 
precisely in the spirit of his method to assert that the 
entropies calculated from (the appropriately weigh- 
ted) (2.2) for different weighting schemes may be 
used to judge among them. By the criterion of 
maximum entropy the unweighted calculations sum- 
marized in Tables 3 and 4 are decisively favored 
because the entropies are an order of magnitude more 
negative for the alternatives. 

Entropy maximization is a completely workable 
alternative to squares minimization for the scaling 
problem. Although the procedure was constructed to 
deal with data records which are at least potentially 
interpretable as positive-definite probability distribu- 
tions, the only practical limitation is that the data all 
be nonzero magnitudes. In fact the method can be 
made completely general through replacement of 
magnitudes by suitably parameterized probabilities 
which reflect the proper range of a random variable. 
The generalizations will be taken up in future papers. 

This work has been supported in part by the Robert 
A. Welch Foundation through grant A-742 and by 
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Abstract 

Two fast methods of superposing two sets of atomic 
coordinates by least-squares refinement are described 
and related to two earlier fast methods. A Newton 
method is applied to rotations of a 3 x 3 outer product 
matrix used previously by Ferro & Hermans [Acta 
Cryst. (1977), A33, 345-347] and by McLachlan [Acta 
Cryst. (1972), A28, 656-657]. Three of the methods 
work better if one molecule has its inertial matrix 
aligned with xyz. A Newton-Gauss method that 
rotates the coordinates can converge rapidly after a 
rough orientation using three strategic atoms. The 
average superposition takes about 0.003 s on a Cyber 
175 with the best method, rotations about the xyz 
axes in turn. Experience with reliability is reported 
for large residuals. 

Introduction 

This paper describes experience with several methods 
for calculating the rigid-body rotations that are 
needed for matching similar molecular structures. 
Two new methods are presented and compared with 
published methods. In applications to proteins there 
is a systematic search for a likeness between a frag- 
ment of structure anywhere in one protein, A, to any 
part of a second protein, B (Rao & Rossmann, 1973; 
Rossmann & Argos, 1976, 1977; Remington & 
Matthews, 1978; McLachlan, 1979). A typical search 
involves more than a million structure matches, so a 
fast method is essential. The frequency of matches 
that do not reach the global minimum for the least- 
squares search is also of concern for interpretation 
of supposed likenesses. 

Three of the methods under discussion here are, 
in principle, equivalent. Thus, aspects of the theory 
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given next are like that given by McLachlan (1972) 
and by Ferro & Hermans (1977). Performances of the 
associated algorithms are not equivalent and effort 
was directed to understanding why not. Running 
times were studied for a variety of conditions: magni- 
tude of the residuals, magnitude of the relative rota- 
tions, orientation of one of the coordinate sets, and 
use of several tricks to speed or ensure convergence. 
The theory set forth here was helpful in understanding 
what gave minimal running times. 

The problem and the Newton method 

Let ak, bk (k = 1 to N)  be the position vectors of two 
sets of N atoms from the molecular fragments A and 
B. Let Wk be a weight for each atom. We want to 
minimize the residual E, an inner product, 

1 w E=~Y'. k ( R a - b ) ' k ( R a - b ) k .  (1) 

Here the prime signifies a transpose so that a' is a 
row vector. If we were to interpret Wk as the strength 
of a linear spring joining the atoms numbered k 
(McLachlan, 1982), then E would have the interpre- 
tation of a potential energy. Such a system is static 
if the net force and torque on, say, A due to B 
vanishes. The vanishing force requires that the cen- 
troids of A and B coincide (McLachlan, 1972; 
Remington & Matthews, 1978) while the vanishing 
torque requires that the weighted vector cross product 
of the structures vanish: 

g----~ Wk(b k Xak)  = 0 .  (2) 

Thus it is reasonable that a unique orthogonal proper 
rotation matrix R with determinant +l exists (see 
McLachlan, 1979), which transforms a referred to the 
centroid as origin to r = Ra and minimizes the residual 
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